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Abstract In this paper, we are concerned with a class of fractional differential equa-
tions given by

Dα
t x(t) = Ax(t) + f (t, x(t)).

Our main results concern the existence, uniqueness of weighted pseudo-almost auto-
morphic classical solutions and optimal mild solutions. Moreover, as example and
applications, we study the weighted pseudo-almost automorphic classical solutions
and optimal mild solutions for a fractional reaction–diffusion equation to illustrate the
practical usefulness of the analytical results that we establish in the paper.

Keywords Optimal mild solution · Weighted pseudo-almost automorphic classical
solution · Fractional differential equation · Fractional reaction–diffusion equation ·
Existence and uniqueness

1 Introduction

Fractional calculus is a field of applied mathematics that deals with derivatives and
integrals of arbitrary orders. In recent years, it has turned out that many phenomena
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in engineering, physics, chemistry and other sciences can be described very success-
fully by models using mathematical tools from fractional calculus. For example, the
nonlinear oscillation of earthquake can be modeled with fractional derivatives and the
fluid-dynamic traffic model with fractional derivatives can eliminate the deficiency
arising from the assumption of continuum traffic flow. Fractional derivatives are also
used in modeling of many chemical processes, mathematical biology and many other
problems in physics and engineering. Fractional derivative is becoming a popular tool
to model various physical phenomena and to describe the dynamical characteristics
of the physical system better than the standard integer order derivatives. For example,
the reaction–diffusion problem is better described by fractional differential equation
than the classical diffusion equation when there is a presence of anomalous diffu-
sion of particles [1,2]. There are some probabilistic interpretations of the fractional
derivatives that better suits in the control theory as well [3,4].

The fractional calculus was first anticipated by Leibnitz, was one of the founders of
standard calculus, in a letter written in 1695. This calculus involves different definitions
of the fractional operators as well as the Riemann-Liouville fractional derivative,
Caputo derivative, Riesz derivative and Grunwald-Letnikov fractional derivative [5].
The fractional calculus has gained considerable importance during the past decades
mainly due to its applications in diverse fields of science and engineering. One observes
that fractional order can be complex in viewpoint of pure mathematics and they have
recently proved to be valuable in various fields of science and engineering. Indeed, one
can find numerous applications in viscoelasticity, electrochemistry, electromagnetism,
biology and hydrogeology. For example space-fractional diffusion equations have been
used in groundwater hydrology to model the transport of passive tracers carried by
fluid flow in a porous medium [6,7] or to model activator-inhibitor dynamics with
anomalous diffusion [8]. For details, see [9–11] and the references therein.

Meanwhile due to their applications in fields of science where fractional differ-
ential equations have attracted increasing attention, and notable contributions have
been made to the applications of fractional differential equations. These equations
are increasingly applied to efficient model problems in research areas as diverse
as machanical systems, dynamical systems, control, chaos,continuous time random
walks, anomalous diffusive and sub-diffusive systems, wave propagation and so on.
Mathematical modelling of complex processes is a major challenge for contemporary
scientist. In contrast to simple classical systems, where the theory of integer order
differential equations is sufficient to describe their dynamics, fractional derivatives
provide an excellent and an efficient instrument for the description of memory and
hereditary properties of various complex materials and systems.

The reaction–diffusion equations arise naturally as description models of many
evolution problems in the real world, as in chemistry (Slepchenko et al. [12]; Vidal
and Pascault [13]), biology (Murray [14]), etc. Mathematically, the reaction–diffusion
systems take the form of semilinear parabolic partial differential equations. Usually, in
real world applications, the reaction term describes the birth-death or reaction occur-
ring inside the habitat or reactor. The diffusion term models the movement of many
individuals in an environment or media. The individuals can be very small particles in
physics, bacteria, molecules, or cells, or very large objects such as animals, plants. As is
well known, complex behavior is peculiarity of systems modeled by reaction–diffusion
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equations and the Belousov–Zhabotinskii reaction (Muller et al. [15]; Winfree [16])
provides a classic example. In recent years, reaction–diffusion equations have been
widely studied and applied in the fields of logistic population growth, flame propaga-
tion, euro physiology, autocatalytic chemical reactions, branching Brownian motion
processes, and nuclear reactor theory. For example reaction–diffusion equations are
commonly applied to model the growth and spreading of biological species (Murray
[14]), and been used as a basis for a wide variety of models, for the special spread of
gene in population and for chemical wave propagation.

The diffusion of two or more chemicals at unequal rates over a surface react with one
another in order to form stable patterns is represented by reaction diffusion equation.
The nature of the diffusion is characterized by temporal scaling of the mean square
displacement < r2(t) >∝ tα . For standard diffusion α = 1, whereas in anomalous
subdiffusion α < 1 and in anomalous superdiffusion α > 1. These situations are called
anomalous diffusion [17,18]. Subdiffusion typically arises in cases where there are
spatial or temporal constraints such as occur in fractured and porous media and fractal
lattices. Superdiffusion may occur in chaotic or turbulent processes through enhanced
transport of particles. The review paper by Klafter et al. [19] provides numerous ref-
erences to physical phenomena in which anomalous diffusion occurs. One popular
model for anomalous diffusion is the fractional diffusion equation, where the usual
second derivative in space is replaced by a fractional derivative of order 0 < α < 2
[1,20]. Standard diffusion is represented by classical diffusion equations and subdif-
fusion and superdiffusion are represented by fractional diffusion equations. Mainardi
and Mainardi et al. [21] generalized the diffusion equation by replacing the first time
derivative with a fractional derivative of order α, and they proved that the process
changes from slow diffusion to classical diffusion, then to diffusion-wave and finally
to classical wave when α increases from 0 to 2. In [22], Oldham and Spanier discuss
the relation between a regular diffusion equation and a fractional diffusion equation
that contains a first order derivative in space and half order derivative in time. The
fundamental solutions of the Cauchy problems associated to these generalized dif-
fusion equations (0 < α ≤ 2) are studied in [21,23]. Recent research indicates that
the classical diffusion equation is inadequate to model many real situations, where a
particle plume spreads faster than the classical model predicts, and may exhibit sig-
nificant asymmetry. Solutions to the fractional diffusion equation spread at a faster
rate than the classical diffusion equation, and may exhibit asymmetry. However, the
fundamental solutions of these equations still exhibit useful scaling properties that
make them attractive for applications.

A fractional reaction–diffusion equation is derived from a continuous time random
walk model when the transport is dispersive. The exit from the encounter distance,
which is described by the algebraic waiting time distribution of jump motion, interferes
with the reaction at the encounter distance. Therefore, the reaction term has a memory
effect. The derived equation is applied to the geminate recombination problem. The
recombination is shown to depend on the intrinsic reaction rate, in contrast with the
results of Sung et al. [24], which were obtained from the fractional reaction–diffusion
equation where the diffusion term has a memory effect but the reaction term does not. In
the recent years, there has been a great deal of interest in fractional reaction–diffusion
systems which from one side exhibit selforganization phenomena and from the other
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side introduce a new parameter to these systems, which is a fractional derivative index,
and it gives a great degree of freedom for diversity of selforganization phenomena and
new nonlinear effects depending on the order of time-space fractional derivatives. From
a mathematics point of view they also offer a rich and promising area of research. The
most important advantage of using fractional differential equations is their nonlocal
property. This indicates that the next state of a system depends not only upon its
current state but also upon all of its previous states. In recent years, the fractional
reaction–diffusion equation has received the applications in systems biology [25,26],
chemistry, and biochemistry applications [27]. A strong motivation for studying and
investigating the solution and the properties for fractional diffusion equations comes
from the fact that they describe efficiently anomalous diffusion on fractals (physical
objects of fractional dimension, like some amorphous semiconductors or strongly
porous materials; see [17,28–33] and references therein), fractional random walk, etc.

In the earlier sixties, Bochner introduced the concept of almost automorphic func-
tion in his papers [34–36] in relation to some aspects of differential geometry. The
notion of almost automorphic function was introduced to avoid some assumptions of
uniform convergence that arise when using almost periodic function, it is an impor-
tant generalization of the classical almost periodic function which is one of the most
attractive topics in the qualitative theory of differential equations because of its sig-
nificance and applications in physics, mathematical biology, control theory, and other
related fields. In the last several decades, the basic theories on the almost automor-
phic functions have been well developed [37–39], and been applied successfully to
the investigation of almost automorphic dynamics produced by many different kinds
of differential equations [40–42]. As a result, several concepts were introduced as
generalizations or restrictions of almost automorphy, such as asymptotic almost auto-
morphy, pseudo almost automorphy, weighted pseudo almost automorphy (see, for
example [43–45]).

The concept of pseudo almost automorphy has recently been introduced in the lit-
erature by Liang, Xiao and Zhang [45,46], as a powerful generalization of both the
notion of almost automorphy due to Bochner [34–36] and that of pseudo almost peri-
odicity due to Zhang [47–49]. Since then, the existence of pseudo-almost automorphic
solutions to differential equations, partial differential equations, and functional differ-
ential equations has been of a great interest to several authors and hence generated
various contributions [50–52]. For more on this concept and related topics, see, e.g.,
[53–55] and references therein.

In 2009, Blot, Mophou, N’Guérékata, Pennequin [44] introduced the concept of
weighted pseudo almost automorphic function, which is a generalization of the clas-
sical almost automorphic functions of Bochner [34–36], the asymptotically almost
automorphic functions of N’Guérékata [43] as well as the pseudo almost automor-
phic functions of Liang, Xiao and Zhang [45,46]. Recently, weighted pseudo almost
automorphic functions are widely investigated and used in the study of differential
equations. Many basic properties and applications to several classes of differential
equations were established, see, for example, [56–58] and references therein. On the
other hand, the properties of weighted pseudo almost automorphic functions are more
complicated and changeable than the almost automorphic functions and the pseudo
almost automorphic functions because the influence of the weight ρ is very strong
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sometimes, and the theory of weighted pseudo almost automorphic functions is wor-
thy to be studied deeply by new ideas.

In this paper, we study some sufficient conditions for the existence, uniqueness of
optimal mild solutions and weighted pseudo-almost automorphic classical solutions
to the following fractional differential equations

Dα
t x(t) = Ax(t) + f (t, x(t)), t ∈ I := [t0, T ], x(t0) = x0 (1.1)

where Dα
t x(t) is the standard Riemann-Liouville fractional derivative, 0 < α ≤ 1, A

is the infinitesimal generator of a analytic semigroup {Q(t)}t≥0 in X, f : R×Xq → X
satisfies suitable conditions. Moreover, the weighted pseudo-almost automorphic clas-
sical solutions and optimal mild solutions for a fractional reaction–diffusion equation,
which is illustrated by example, are in good agreement with the theoretical analysis.

The Eq. (1.1) for a particular case in which α = 1 has been considered by Bahuguna
and Srvastavai [59]. The existence of a unique mild solution to Eq. (1.1) with α = 1
is assured under the conditions that A is the infinitesimal generator of a compact
semigroup in X, f (t, x) is continuous in both the variables and uniformly locally
Lipschitz continuous in x . If the Lipschitz continuity of f in x is dropped, then the
existence of a mild solution is no more guaranteed, Examples, in which A = 0, f is
continuous and the differential equations do not have solutions are given in Dieudonne
[60] and Yorke [61]. Very recently, Balachandran and Park [62] have studied the
existence and uniqueness of solutions to Eq. (1.1) with nonlocal initial conditions.
The main approach used in [62] is the Krasnoselskii’s fixed point theorem. For more
information in this fields, see [10,62–66] and the references therein.

The rest of this paper is organized as follows. In Sect. 2, some concepts and the
relating notations are introduced. In Sect. 3, some criteria ensuring the existence and
uniqueness of solutions are presented. In Sect. 4, the existence and uniqueness of opti-
mal mild solutions were proved. In Sect. 5, the existence and uniqueness of weighted
pseudo-almost automorphic classical solutions were proved. Finally, in Sect. 6, as
example and applications, we study the weighted pseudo-almost automorphic classi-
cal solutions and optimal mild solutions for a fractional reaction–diffusion equation
to illustrate the practical usefulness of the analytical results that we establish in the
paper.

2 Preliminaries

From now on, let (X, ‖ · ‖), (Y, ‖ · ‖Y ) be two Banach spaces, L(X) is the Banach
space of all linear and bounded operators on X . BC(R, X) (resp., BC(R × Y, X))
is the space of all X -valued bounded continuous functions (resp., jointly bounded
continuous functions f : R × Y → X ). Furthermore, C(R, X) (resp., C(R × Y, X))
denotes the class of continuous functions from R into X (resp., jointly continuous
functions f : R × Y → X ). For a linear operator A with domain D(A), denote by
R(A), ρ(A) the range and the resolvent set of A.

In the following, we firstly give a brief outline of the theory of fractional powers
as developed in [67]. Let A be the infinitesimal generator of an analytic semigroup
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{Q(t)}t≥0 in Banach space X and 0 ∈ ρ(A). For q > 0, define the fractional power
A−q by

A−q = 1

�(q)

∞∫

0

tq−1 Q(t)dt.

For 0 < q ≤ 1, Aq is a closed linear operator whose domain D(Aq) ⊃ D(A) is dense
in X . The closedness of Aq implies that D(Aq) endowed with the graph norm

‖x‖D(A) = ‖x‖ + ‖Aq x‖, x ∈ D(Aq),

is a Banach space. Clearly Aq = (A−q)−1, because A−q is one to one. Since 0 ∈
ρ(A), Aq is invertible, and its graph norm is equivalent to the norm ‖x‖q = ‖Aq x‖.
Thus D(Aq) equipped with the norm ‖ · ‖q is a Banach space which denotes by Xq .

Lemma 2.1 [67] Let A be the infinitesimal generator of an analytic semigroup
{Q(t)}t≥0. If 0 ∈ ρ(A), then

(1) Q(t) : X → D(Aq) for every t > 0 and q ≥ 0,
(2) For every x ∈ D(Aq), one has Q(t)Aq x = Aq Q(t)x,
(3) For every t > 0, the operator Aq Q(t) is bounded and ‖Aq Q(t)‖L(X) ≤

Mqtqe−δt ,
(4) For 0 < q ≤ 1 and x ∈ D(Aq), one has ‖Q(t)x − x‖ ≤ Cqtq‖Aq x‖.

The concept of pseudo-almost automorphic function is a natural generalization of
that of almost automorphic function, and the concept of almost automorphic functions
was first created by Bochner. Since then, those functions have been widely studied and
developed. Now, let us recall some basic definitions and results on almost automorphic
functions and pseudo almost automorphic functions.

Definition 2.1 (Bochner [36]) A continuous function f : R → X is said to be
almost automorphic if for every sequence of real numbers {s′

n}∞n=1, one can extract a
subsequence {sn}∞n=1 such that

g(t) = lim
n→∞ f (t + sn),

is well defined in t ∈ R, and

lim
n→∞ g(t − sn) = f (t),

for each t ∈ R.

Denote by AA(R, X) the set of all such functions.

Remark 2.1 The function g in Definition 2.1 is measurable, but not necessarily con-
tinuous. Moreover, if g is continuous, then f is uniformly continuous (cf., e.g., [68],
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Theorem 2.6). If the convergence in Definition 2.1 is uniform in t ∈ R, then f is almost
periodic. A classical example of almost automorphic function (not almost periodic) is
(cf. [69])

f (t) = sin

(
1

2 + cos t + cos
√

2t

)
, t ∈ R.

Definition 2.2 [36] A continuous function f : R × Y × Y → X is said to be almost
automorphic if f (t, x, y) is automorphic in t ∈ R uniformly for all (x, y) ∈ K , where
K is any bounded subset of Y × Y . That is to say, for every sequence of real numbers
{s′

n}∞n=1, one can extract a subsequence {sn}∞n=1 such that

g(t, x, y) = lim
n→∞ f (t + sn, x, y),

is well defined in t ∈ R, (x, y) ∈ K , and

lim
n→∞ g(t − sn, x, y) = f (t, x, y),

for each t ∈ R, (x, y) ∈ K .

The collection of those functions is denoted by AA(R × Y × Y, X).

Lemma 2.2 [37] (AA(R, X), ‖ · ‖AA(R,X)) is a Banach space with the supremum
norm given by

‖ f ‖AA(R,X) = sup
t∈R

‖ f (t)‖.

Lemma 2.3 [37] Assume that f : R → X is almost automorphic, then f is bounded.
Let

P AP0(X) :=
{
ϕ ∈ BC(R, X) : lim

T →∞
1

2T

T∫

−T

‖ϕ(t)‖dt = 0
}
,

P AP0(Y × Y, X) :=
{
ϕ ∈ C(R × Y × Y, X) : ϕ(·, x, y) is bounded for each

×(x, y) ∈ Y × Y and lim
T →∞

1

2T

T∫

−T

‖ϕ(t, x, y)‖dt = 0

×uniformly in compact subset of Y × Y
}
.

Definition 2.3 [45] A continuous function f : R → X is said to be pseudo almost
automorphic if it can be decomposed as

f = g + ϕ,

where g ∈ AA(R, X) and ϕ ∈ P AA0(R, X).
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Denote by P AA(R, X) the set of all such functions.

Definition 2.4 [45] A continuous function f : R × Y × Y → X is said to be pseudo
almost automorphic if it can be decomposed as

f = g + ϕ,

where g ∈ AA(R × Y × Y, X) and ϕ ∈ P AA0(R × Y × Y, X).

Denote by P AA(R × Y × Y, X) the set of all such functions.
Blot, Mophou, N’Guérékata, Pennequin [44] introduced the concept of weighted

pseudo almost automorphic function, which is a generalization of the classical almost
automorphic functions of Bochner [34–36], the asymptotically almost automorphic
functions of N’Guérékata [43] as well as the pseudo almost automorphic functions
of Liang, Xiao and Zhang [45,46], and the author gave some properties of the space
of weighted pseudo almost automorphic functions such as the completeness and the
composition theorem. Let us explain the meaning of this notion.

Using the same setting as in [44], let U be the collection of all piecewise continuous
functions ρ : R → [0,∞) satisfying ρ ∈ Lloc(R). If ρ ∈ U and T > 0, define

m(T, ρ) :=
T∫

−T

ρ(x)dx .

As in the particular case when ρ(x) = 1 for each x ∈ R, we are exclusively interested
in those weighted ρ, for which, m(T, ρ) → ∞ as T → ∞. Throughout the rest of
the work, the notations U∞ and UB stands for the sets of weight functions

U∞ := {ρ ∈ U : lim
T →∞ m(T, ρ) = ∞},

UB := {ρ ∈ U∞ is bounded : lim inf
x→∞ ρ(x) > 0}.

Let ρ ∈ U∞, define the “weighted ergodic” space

P AP0(X, ρ) :=
{
ϕ ∈ BC(R, X) : lim

T →∞
1

m(T, ρ)

T∫

−T

‖ϕ(t)‖ρ(t)dt = 0
}
,

P AP0(Y, X, ρ) :=
{
ϕ ∈ C(R × Y, X) : ϕ(·, y) is bounded for each y ∈ Y and

× lim
T →∞

1

m(T, ρ)

T∫

−T

‖ϕ(t, y)‖ρ(t)dt = 0

×uniformly in compact subset of Y
}
.

Definition 2.5 [44] A continuous function f : R → X is said to be weighted pseudo
almost automorphic if it can be decomposed as

123



1992 J Math Chem (2014) 52:1984–2012

f = g + ϕ,

where g ∈ AA(R, X, ρ) and ϕ ∈ P AA0(R, X, ρ).

Denote by W P AA(R, X, ρ) the set of all such functions.

Definition 2.6 [44] A continuous function f : R×Y ×Y → X is said to be weighted
pseudo almost automorphic if it can be decomposed as

f = g + ϕ,

where g ∈ AA(R × Y × Y, X, ρ) and ϕ ∈ P AA0(R × Y × Y, X, ρ).

Denote by W P AA(R × Y × Y, X, ρ) the set of all such functions.

Remark 2.2 [44] When ρ = 1, we obtain the standard spaces P AA(R, X) and
P AA(R × Y × Y, X).

Let V∞ be the collection of all continuous weights ρ : R → (0,∞) so that for
every τ ∈ R

lim sup
s→∞

ρ(s + τ)/ρ(s) < ∞, lim sup
T →∞

m(t + τ, ρ)/m(t, ρ) < ∞.

Remark 2.3 [44] If ρ ∈ V∞, then the space P AP(X, ρ) is translation invariant.

Lemma 2.4 [44] The decomposition of a weighted pseudo almost automorphic func-
tion is unique for any ρ ∈ UB.

Lemma 2.5 [44] If ρ ∈ U∞, (W P AA(R, X, ρ), ‖·‖W P AA(R,X,ρ)) is a Banach space
with the supremum norm given by

‖ f ‖W P AA(R,X,ρ) = sup
t∈R

‖ f (t)‖.

The fractional calculus was first anticipated by Leibnitz, was one of the founders of
standard calculus, in a letterwritten in 1695. This calculus involves different definitions
of the fractional operators as well as the Riemann-Liouville fractional derivative,
Caputo derivative, Riesz derivative and Grunwald-Letnikov fractional derivative. The
fractional calculus has gained considerable importance during the past decades mainly
due to its applications in diverse fields of science and engineering. For the purpose of
this paper the Riemann-Liouville’s definition of fractional derivative will be used. In
the following, we give some basic definitions and properties of the fractional calculus
theory which are used further in this paper.

Definition 2.7 [70] The fractional integral of order α > 0 with the lower limit t0 for
a function f is defined as

I α f (t) = 1

�(α)

t∫

t0

(t − s)α−1 f (s)ds, t > t0, α > 0,
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provided the right-hand side is pointwise defined on [t0,∞), where � is the Gamma
function.

Definition 2.8 [70] Riemann-Liouville derivative of order α > 0 with the lower limit
t0 for a function f : [t0,∞) → R can be written as

Dα
t f (t) = 1

�(n − α)

dn

dtn

t∫

t0

(t − s)−α f (s)ds, t > t0, n − 1 < α < n.

The first and maybe the most important property of Riemann-Liouville fractional
derivative is that for t > t0 and α > 0, one has Dα

t (I α f (t)) = f (t) which means that
Riemann-Liouville fractional differentiation operator is a left inverse to the Riemann-
Liouville fractional integration operator of the same order α.

3 Existence and uniqueness of solutions

To study the existence and uniqueness of solutions to Eq. (1.1), we require the following
assumptions.

(H1) The operator A is the infinitesimal generator of an analytic semigroup Q(t)
satisfying

‖Q(t)‖L(X) ≤ M ′ exp(−δ′t), for t ≥ 0;

(H2) N = sup
t∈R

‖ f (t, A−q x(t))‖ < ∞, and there exists constants η ∈ (0, 1], L > 0

such that

‖ f (t, x) − f (t̄, x̄)‖ ≤ L
(|t − t̄ |η + ‖x − x̄‖q

)
, (3.1)

for (t, x), (t̄, x̄) ∈ R × Xq ;

Lemma 3.1 [9] If g satisfies a uniform Hölder condition with exponent β ∈ (0, 1],
then the unique solution of the Cauchy problem

Dα
t x(t) = Ax(t) + g(t), t ∈ I, x(t0) = x0, (3.2)

is given by

x(t) =
∞∫

0

ζα(θ)Q((t − t0)
αθ)x0dθ

+α

t∫

t0

∞∫

0

θ(t − η)α−1ζα(θ)Q((t − η)αθ)g(η)dθdη,
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where ζα(θ) is a probability density function defined on (0,∞). The Laplace transform
of ζα is given by [71]

∞∫

0

e−ptζα(t) = Fα(p) =
∞∑
j=0

(−p) j

�(1 + α j)
, 0 < α < 1. (3.3)

By a classical solution to Eq. (1.1), we mean a function x with values in X such
that x is continuous on [t0, T ] and x(t) ∈ D(A), moreover Dα

t x(t) exists, continuous
on (t0, T ) and x satisfies Eq. (1.1) on (t0, T ).

Theorem 3.1 Let (H1) and (H2) be satisfied. Then Eq. (1.1) admits a unique solution
for L sufficiently small.

Proof Define F : C(R, X) → C(R, X) by

(Fx)(t) =
∞∫

0

ζα(θ)Aq Q((t − t0)
αθ)x0dθ

+α

t∫

t0

∞∫

0

θ(t − η)α−1ζα(θ)Aq Q((t − η)αθ) f (η, A−q x(η))dθdη.

Firstly, we show that F is well defined. ��

By Lemma 2.1 (3), one has

‖Fx(t)‖ ≤ Mq‖x0‖
∞∫

0

ζα(θ)tqe−δθ(t−t0)α dθ

+αN Mq

t∫

t0

∞∫

0

θ1−qζα(θ)(t − η)−αq+α−1e−δθ(t−η)α dθdη.

By the properties of the probability density function ζα , we conclude that Fx exists.
Secondly, we show that the operator F has a unique fixed point in C(R, X).
Taking t ∈ I and x1(t), x2(t) ∈ C(R, X), using Lemma 2.1 (3) and (H2) one gets

‖Fx1(t) − Fx2(t)‖ ≤ LαMq‖x1(t)

− x2(t)‖∞
t∫

t0

∞∫

0

θ1−qζα(θ)(t − η)−αq+α−1e−δθ(t−η)α dθdη.
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Set s = t − η, one obtains

‖Fx1(t) − Fx2(t)‖∞ ≤ LαMq‖x1(t)

− x2(t)‖∞
t∫

t0

∞∫

0

θ1−qζα(θ)s−αq+α−1e−δθsα

dθds.

It is known from above that the double integral in the right-hand side of the inequality
exists, then we choose L sufficiently small, thus F is a strict contraction. By the
contraction mapping theorem there exists x(t) ∈ C(R, X) such that

x(t) =
∞∫

0

ζα(θ)Aq Q((t − t0)
αθ)x0dθ

+α

t∫

t0

∞∫

0

θ(t − η)α−1ζα(θ)Aq Q((t − η)αθ) f (η, A−q x(η))dθdη. (3.4)

Since Aq is closed, applying A−q on both sides of (3.4), one gets

A−q x(t) =
∞∫

0

ζα(θ)Q((t − t0)
αθ)x0dθ

+α

t∫

t0

∞∫

0

θ(t − η)α−1ζα(θ)Q((t − η)αθ) f (η, A−q x(η))dθdη. (3.5)

Thirdly, we show that the solution x of (3.5) is Hölder continuous.
In fact, let

x1(t) =
∞∫

0

ζα(θ)Aq Q(tαθ)x0dθ,

x2(t) = α

t∫

t0

∞∫

0

θ(t − η)α−1ζα(θ)Aq Q((t − η)αθ) f (η, A−q x(η))dθdη.

Notice that for each x0 ∈ X ,

∞∫

0

t+h∫

t

ζα

d

dη
Aq Q(ηαθ)x0dηdθ =

∞∫

0

ζα Aq [Q((t + h)αθ) − Q(tαθ)]x0dθ

=
∞∫

0

t+h∫

t

αζαηα−1 Aq+1 Q(ηαθ)x0dηdθ.

123



1996 J Math Chem (2014) 52:1984–2012

Thus

‖x1(t + h) − x1(t)‖ =
∥∥∥

∞∫

0

t+h∫

t

αζα(θ)ηα−1 Aq+1 Q(ηαθ)x0dηdθ

∥∥∥

≤ α‖Aq+1x0‖
t+h∫

t

∞∫

0

ζα(θ)ηα−1e−δ(ηαθ)dηdθ. (3.6)

On the other hand, by Lemma 2.1 (4), for every h > 0, β satisfying 0 < β < 1 − q,
one has

‖(Q(h) − I )Aq Q(t − η)‖L(X) = Cβhβ‖Aq+β Q(t − η)‖L(X). (3.7)

Also for h ≥ 0, one can write

‖Q((t + h − η)αθ)‖L(X)

= ‖Q((t + h − η)αθ − (t − η)αθ∗ − hαθ∗)Q(hαθ∗)Q((t − η)αθ∗)‖L(X)

≤ M∗‖Q(hαθ∗)Q((t − η)αθ∗)‖L(X). (3.8)

where θ∗ = θ
2 and M∗ is a constant. Using (3.7), (3.8) and Lemma 2.1 (3), one gets

‖x2(t + h) − x2(t)‖

≤ α
(∥∥∥M∗

t∫

t0

∞∫

0

θ(λα−1 − μα−1)ζα(θ)(Q(hαθ∗) − I )Aq Q(μαθ∗) f dθdη

∥∥∥

+
∥∥∥

t+h∫

t

∞∫

0

θλα−1ζα(θ)Aq Q(λαθ) f dθdη

∥∥∥
)

≤ αN
(

M∗Cβhαβ Mq+β

t∫

t0

∞∫

0

θ(λα−1 − μα−1)

×ζα(θ)(θ∗)βμ−α(q+β)e−δμαθ∗
(θ∗)−(q+β)dθdη

+Mq

t+h∫

t

∞∫

0

θλα−1ζα(θ)λ−αqθ−qe−δλαθ dθdη
)
, (3.9)

where

λ = t + h − η, μ = t − η, f = f (η, A−q x(η)).

Combine (3.6) with (3.9), one can estimate each term of the inequality separately to
get
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‖x(t + h) − x(t)‖ ≤ ‖x1(t + h) − x1(t)‖
+‖x2(t + h) − x2(t)‖ ≤ Chαβ,

which means that x is Hölder continuous. From assumption (H2), one has

‖ f (t, A−q x(t)) − f (s, A−q x(s))‖ ≤ L(|t − s|η
+‖x(t) − x(s)‖ + ‖Gx(t) − Gx(s)‖). (3.10)

Using (H2) again, one can deduces that t → f (t, A−q x(t)) is Hölder continuous.
Let x(t) be the solution of (3.4) and consider the equation

Dα
t x(t) = Ax(t) + f (t, A−q x(t)), t ∈ I, x(t0) = x0. (3.11)

By Lemma 3.1, one can deduce that (3.11) has a unique solution given by

y(t) =
∞∫

0

ζα(θ)Q((t − t0)
αθ)x0dθ

+α

t∫

t0

∞∫

0

θ(t − η)α−1ζα(θ)Q((t − η)αθ) f (η, A−q x(η))dθdη. (3.12)

Moreover,

y(t) ∈ D(A) ⊂ D(Aq), for all t ∈ I.

Applying Aq on both sides of (3.12), one gets

Aq y(t) =
∞∫

0

ζα(θ)Aq Q((t − t0)
αθ)x0dθ

+α

t∫

t0

∞∫

0

θ(t − η)α−1ζα(θ)Aq Q((t − η)αθ) f (η, A−q x(η))dθdη = x(t).

Clearly

y(t) = A−q x(t)

is a solution to Eq. (1.1), the uniqueness of y follows from the uniqueness of (3.4) and
(3.12). This completes the proof of the theorem.

4 Weighted pseudo-almost automorphic classical solutions

In the proof of our main result, we need the following assumptions and technical
lemmas.
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(H3) f ∈ P AP(Xq , X, ρ) satisfying (3.1).

Lemma 4.1 [37] Let f : R× → X be uniformly almost automorphic and x : R →
 be an almost automorphic function such that R(x) ⊂ , then t → f (t, x(t)) is
also almost automorphic.

Lemma 4.2 Let ρ ∈ V∞ and (H4) be satisfied, for x ∈ P AA(R, X, ρ), t →
f (t, A−q x(t)) is weighted pseudo-almost automorphic.

Proof Since

x ∈ P AA(R, X, ρ), f ∈ P AA(R, Xq , X, ρ),

hence, they can be expressed as x = y + z and f = g +ϕ, where y ∈ AA(R, X), g ∈
AA(R, X, X) and z, ϕ are bounded continuous function such that

lim
T →∞

1

m(T, ρ)

T∫

−T

‖z(t)‖ρ(t)dt = 0, (4.1)

lim
T →∞

1

m(T, ρ)

T∫

−T

‖ϕ(t, A−q x(t), G(A−q x(t)))‖ρ(t)dt = 0. (4.2)

Since

f (t, A−q x(t)) = f (t, A−q x(t)) − f (t, A−q y(t)) + g(t, A−q y(t)) + ϕ(t, A−q y(t))

= I1(t) + I2(t) + I3(t),

where

I1 = f (t, A−q x(t)) − f (t, A−q y(t)), I2 = g(t, A−q y(t)), I3 = ϕ(t, A−q y(t)).

It follows from Lemma 4.1 that t → f (t, A−q y(t)) is almost automorphic. According
to (H3) and (4.1), (4.2), one has

lim
T →∞

1

m(T, ρ)

T∫

−T

‖I1(t) + I3(t)‖ρ(t)dt

≤ lim
T →∞

1

m(T, ρ)

T∫

−T

(‖I1(t)‖ + ‖I3(t)‖)ρ(t)dt = 0.

��
Lemma 4.3 If g : R → X is weighted pseudo-almost automorphic and locally Hölder
continuous, then there exists one and only one weighted pseudo-almost automorphic
classical solution over R to Eq. (3.2) given by
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x(t) = α

t∫

−∞

∞∫

0

θ(t − η)α−1ζα(θ)Q((t − η)αθ)g(η)dθdη.

For the proof we use the same technique which appear in Zaidman [72].

Theorem 4.1 Let ρ ∈ V∞ and (H1) and (H3) be satisfied. Then Eq. (1.1) has a unique
weighted pseudo-almost automorphic ciassical solution for L sufficiently small.

Proof From Pazy [67], it is clear that if f is Hölder continuous and A generates an
analytic semigroup, then the mild solution to Eq. (1.1) in fact is a classical solution.
Let x ∈ P AA(R, X, ρ), using a standard properties of the weighted pseudo almost
automorphy, one has

N = sup
t∈R

‖ f (t, A−q x(t))‖ < ∞,

thus (H3) implies (H2). According to Theorem 3.1, a solution to Eq. (1.1) can be
formally represented by (3.12). When A generates a semigroup with negative exponent,
one deduces that if x(·) is a bounded mild solution to Eq. (1.1), then taking the limit
as t0 → −∞ on the right-hand side of (3.12) and using (3.3), one obtains

A−q x(t) = α

t∫

−∞

∞∫

0

θ(t − η)α−1ζα(θ)Q((t − η)αθ) f (η, A−q x(η))dθdη. (4.3)

Conversely, if x(·) is a bounded continuous function and (4.3) is verified, then x(·) is
a mild solution to Eq. (1.1). Define

T x(t) = α

t∫

−∞

∞∫

0

θ(t − η)α−1ζα(θ)Aq Q((t − η)αθ) f (η, A−q x(η))dθdη. (4.4)

Firstly, we show that T is well defined. ��
By Lemma 2.1 (3), one has

‖T x(t)‖ ≤ αN Mq

t∫

−∞

∞∫

0

θ1−qζα(θ)(t − η)−αq+α−1e−δθ(t−η)α dθdη.

By the properties of the probability density function ζα and the definition of the gamma
function we conclude that T x exists.

Secondly, we show the operator T maps P AA(R, X, ρ) into itself. Furthermore,
T has a unique fixed point in P AP(X, ρ).
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It follows from Lemma 4.2 that for x ∈ P AA(R, X, ρ), t → f (t, A−q x(t)) is
weighted pseudo-almost automorphic. Hence, it can be expressed as f = g + ϕ,
where g ∈ AA(R, X) and ϕ is bounded continuous function such that

lim
T →∞

1

m(T, ρ)

T∫

−T

‖ϕ(t, A−q x(t))‖ρ(t)dt = 0.

Since g ∈ AA(R, X), then for every sequence of real numbers {s′
n}∞n=1, one can extract

a subsequence {sn}∞n=1 and a function g̃ such that

‖g(t + sn, A−q x(t + sn)) − g̃(t, A−q x(t))‖ < ε,

and

‖g̃(t − sn, A−q x(t − sn)) − g(t, A−q x(t))‖ < ε.

Therefore, the map T defined by (4.4) satisfies

T x(t) = α

t∫

−∞

∞∫

0

θ(t − η)α−1ζα(θ)Aq Q((t − η)αθ)g(η, A−q x(η))dθdη

+α

t∫

−∞

∞∫

0

θ(t − η)α−1ζα(θ)Aq Q((t − η)αθ)ϕ(η, A−q x(η))dθdη

= Tgx(t) + Tϕx(t).

Let

Tg̃x(t) = α

t∫

−∞

∞∫

0

θ(t − η)α−1ζα(θ)Aq Q((t − η)αθ)g(η, A−q x(η))dθdη.

Thus, one has

‖Tgx(t + sn) − Tg̃x(t)‖

=
∥∥∥α

t+sn∫

−∞

∞∫

0

θ(t + sn − η)α−1ζα(θ)Aq Q((t + sn − η)αθ)g(η, A−q x(η))dθdη

−α

t∫

−∞

∞∫

0

θ(t − η)α−1ζα(θ)Aq Q((t − η)αθ)g̃(η, A−q x(η))dθdη

∥∥∥
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=
∥∥∥α

t∫

−∞

∞∫

0

θ(t − η)α−1ζα(θ)Aq Q((t − η)αθ)(g(η + sn, A−q x(η + sn))

− g̃(η, A−q x(η)))dθdη

∥∥∥

≤ εαMq

t∫

−∞

∞∫

0

θ1−qζα(θ)(t − s)−αq+α−1e−δθ(t−s)α dθds.

Proceeding as previously, one can show that

‖Tg̃x(t − sn) − Tgx(t)‖ ≤ εαMq

t∫

−∞

∞∫

0

θ1−qζα(θ)(t − s)−αq+α−1e−δθ(t−s)α dθds,

that is Tgx(t) ∈ AA(R, X). On the other hand

lim
T →∞

1

m(T, ρ)

T∫

−T

‖Tϕx(t)‖ρ(t)dt

= lim
T →∞

α

m(T, ρ)

T∫

−T

∥∥∥
t∫

−∞

∞∫

0

θ(t − η)α−1ζα(θ)Aq Q((t − η)αθ)

×ϕ(η, A−q x(η))dθdη

∥∥∥ρ(t)dt

≤ lim
T →∞

αMq

m(T, ρ)

T∫

−T

t∫

−∞

∞∫

0

θ1−qζα(θ)(t − η)−αq+α−1e−δθ(t−η)α‖

×ϕ(η, A−q x(η))‖dθdηρ(t)dt

= αMq

t∫

−∞

∞∫

0

θ1−qζα(θ)(t − η)−αq+α−1e−δθ(t−η)α dθdη

× lim
T →∞

1

m(T, ρ)

T∫

−T

‖ϕ(η, A−q x(η))‖ρ(t)dt.

Then one has

lim
T →∞

1

m(T, ρ)

T∫

−T

‖Tϕx(t)‖ρ(t)dt = 0,

which means Tϕx(t) ∈ P AP0(R, X, ρ).
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Let x1(t), x2(t) ∈ P AA(R, X, ρ), using Lemma 2.1 (3) and assumption (H3) one
gets

‖T x1(t) − T x2(t)‖

≤ LαMq‖x1(t) − x2(t)‖∞
t∫

−∞

∞∫

0

θ1−qζα(θ)(t − η)−αq+α−1e−δθ(t−η)α dθdη.

Set s = t − η, one obtains

‖T x1(t) − T x2(t)‖∞

≤ LαMq‖x1(t) − x2(t)‖∞
t∫

−∞

∞∫

0

θ1−qζα(θ)s−αq+α−1e−δθsα

dθds.

It is known from above that the double integral in the right-hand side of the inequality
exists, then we choose L sufficiently small, thus T is a strict contraction. By the
contraction mapping theorem there exists x(t) ∈ P AP(R, X, ρ) such that

x(t) = α

t∫

−∞

∞∫

0

θ(t − η)α−1ζα(θ)Aq Q((t − η)αθ) f (η, A−q x(η))dθdη. (4.5)

Since Aq is closed, applying A−q on both sides of (4.5), one gets

A−q x(t) = α

t∫

−∞

∞∫

0

θ(t − η)α−1ζα(θ)Q((t − η)αθ) f (η, A−q x(η))dθdη.

Finally, we show that the solution x of (4.5) is Hölder continuous.
Using (3.7), (3.8) and Lemma 2.1 (3), one gets

‖x(t + h) − x(t)‖

≤ α
(∥∥∥M∗

t∫

−∞

∞∫

0

θ(λα−1 − μα−1)

× ζα(θ)(Q(hαθ∗) − I )Aq Q(μαθ∗) f (η, A−q x(η))dθdη

∥∥∥

+
∥∥∥

t+h∫

t

∞∫

0

θλα−1ζα(θ)Aq Q(λαθ) f (η, A−q x(η))dθdη

∥∥∥
)

≤ αM∗Cβhαβ N Mq+β

t∫

−∞

∞∫

0

θ(λα−1 − μα−1)
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× ζα(θ)(θ∗)βμ−α(q+β)(θ∗)−(q+β)e−δμαθ∗
dθdη

+αN Mq

t+h∫

t

∞∫

0

θλα−1ζαλ−αqθ−qe−δλαθ dθdη,

where

λ = t + h − η, μ = t − η.

One can estimate each term of the inequality separately to get

‖x(t + h) − x(t)‖ ≤ Chαβ,

which means that x is Hölder continuous. Combine (3.10) with (H3), one can deduce
that t → f (t, A−q x(t)) is Hölder continuous. Let x be the solution of (4.5) and
consider the equation

Dα
t x(t) = Ax(t) + f (t, A−q x(t)), t ∈ I. (4.6)

By Lemma 4.3, Eq. (4.6) has a unique weighted pseudo almost automorphic solution
given by

y(t) = α

t∫

−∞

∞∫

0

θ(t − η)α−1ζα(θ)Q((t − η)αθ) f (η, A−q x(η))dθdη. (4.7)

Moreover, y(t) ∈ D(A) ⊂ D(Aq) for all t ∈ R. Applying Aq on both sides of (4.7),
one gets

Aq y(t) = α

t∫

−∞

∞∫

0

θ(t − η)α−1ζα(θ)Q((t − η)αθ) f (η, A−q x(η))dθdη = x(t).

Clearly y(t) = A−q x(t) is a solution to Eq. (1.1), the uniqueness of y(t) follows
from the uniqueness of the solution of (4.5) and (4.7). This completes the proof of the
theorem.

5 Optimal mild solutions

Before starting our main results in this subsection, we recall the definition of the mild
solution to Eq. (1.1).
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Definition 5.1 A continuous function x : I → X satisfying the integral equation

x(t) =
∞∫

0

ζα(θ)Q((t − t0)
αθ)x0dθ

+α

t∫

t0

∞∫

0

θ(t − η)α−1ζα(θ)Q((t − η)αθ) f (η, x(η))dθdη. (5.1)

is called a mild solution to Eq. (1.1).

As in [37], we consider in X the Eq. (1.1) with the following assumptions

(H4) A : D(A) ⊂ X → X generates a C0 semigroup Q(t) satisfying

sup
t∈R+

‖Q(t)‖L(X) < ∞;

(H5) f : R × Xq → X is a nontrivial strongly continuous function satisfying (3.1),
moreover f is convex in x ∈ Xq .

(H6) limn→∞ ‖xn(t) − x(t)‖ = 0 implies limn→∞ ‖xn(t) − x(t)‖q = 0, for
xn(t), x(t) ∈ X .

Denote by  f the set of all mild solutions x(t) to Eq. (1.1) which are bounded over
R, that is

μ(x) = sup
t∈R

‖x(t)‖ < ∞.

Assume here that  f �= ∅, and recall the following

Definition 5.2 A bounded mild solution x̃(t) to Eq. (1.1) is called an optimal mild
solution to Eq. (1.1) if

μ(x̃) ≡ μ∗ = inf
x∈ f

μ(x).

Our proof is based on the following lemma.

Lemma 5.1 [73] If K is a nonempty convex and closed subset of a uniformly convex
Banach space X and v /∈ K , then there exists a unique k0 ∈ K such that

‖v − k0‖ = inf
k∈K

‖v − k‖.

Theorem 5.1 Assume that  f �= ∅ and (H4), (H5), (H6) hold, then Eq. (1.1) has a
unique optimal mild solution.

Proof It suffices to prove that  f is a convex and closed set because the trivial solution
0 /∈  f , then we use Lemma 5.1 to deduce the uniqueness of the optimal mild solution.
For the convexity of  f , consider two distinct bounded mild solutions x1(t), x2(t)
and a real number 0 ≤ λ ≤ 1, let
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x(t) = λx1(t) + (1 − λ)x2(t), t ∈ R.

For every t0 ∈ R, x(t) is continuous and has the integral representation

x(t) = T (t − t0)x(t0) +
t∫

t0

S(t − η) f (η, x(η))dη, t > t0, (5.2)

where

T (t) =
∞∫

0

ζα(θ)Q(tαθ)dθ, S(t) = α

∞∫

0

θ tα−1ζα(θ)Q(tαθ)dη.

One has

x(t0) = λx1(t0) + (1 − λ)x2(t0)

and f (t, x) is convex in x , then x(t) is a mild solution to Eq. (1.1). Note that x(t) is
bounded over R since

μ(x) = sup
t∈R

‖x(t)‖ ≤ λμ(x1) + (1 − λ)μ(x2) < ∞.

One concludes that x(t) ∈  f . Now we show that  f is closed, let a sequence
xn ∈  f such that

lim
n→∞ xn(t) = x(t), t ∈ R.

For all t0 ∈ R and t ≥ t0 one has

xn(t) = T (t − t0)xn(t0) +
t∫

t0

S(t − η) f (η, xn(η))dη.

It is clearly that T (t − t0) and S(t − η) are continuous operators, then for every fixed
t and t0 with t ≥ t0, one has

lim
n→∞ T (t − t0)xn(t0) = lim

n→∞

∞∫

0

ζα(θ)Q(tαθ)xn(t0)dθ

=
∞∫

0

ζα(θ)Q(tαθ)dθ lim
n→∞ xn(t0)

= T (t − t0) lim
n→∞ xn(t0) = T (t − t0)x(t0).
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Similarly one has

lim
n→∞

t∫

t0

S(t − η) f (η, xn(η))dη =
t∫

t0

S(t − η) lim
n→∞ f (η, xn(η))dη

=
t∫

t0

S(t − η) f (η, x(η))dη.

Then one deduces that

x(t) = T (t − t0)x(t0) +
t∫

t0

S(t − η) f (η, x(η))dη,

for all t0 ∈ R, t > t0, which means that x(t) is a mild solution to Eq. (1.1). ��
Finally we show that x(t) is bounded over R. One can write (6.2) as

x(t) = T (t − t0)x(t0) +
t∫

t0

S(t − η) f (η, x(η))dη − xn(t) + xn(t)

= T (t−t0)[x(t0)−xn(t0)]+
t∫

t0

S(t−η)[ f (η, x(η))− f (η, xn(η))]dη+xn(t),

for every n = 1, 2, . . ., and every t0 ∈ R such that t > t0.
Let

M = sup
t∈R+

‖Q(tαθ)‖ < ∞,

since

∞∫

0

ζα(θ)dθ = 1,

then ‖T (t)‖ ≤ M , again since

∞∫

0

θζα(θ)dθ = 1,

then

‖S(t)‖ ≤ α|t |α−1 sup
t∈R+

‖Q(tαθ)‖ ≤ Mα|t |α−1.
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Combine (H5) with (H6), one has

‖x(t)‖ ≤ M‖x(t0) − xn(t0)‖ + αM L

t∫

t0

|t − η|α−1‖x(η) − xn(η)‖qdη + ‖xn(t)‖.

Choose n large enough and using (H7), for every ε > 0 one gets

‖x(t)‖ ≤ Mε + αM Lε

t∫

t0

|t − η|α−1dη + μ(xn),

then one has

μ(x) ≤ ε1 + ε2 + μ(xn) < ∞.

Thus x ∈  f . This completes the proof of the theorem.

6 Applications

In this section, as example and applications, we study the weighted pseudo-almost
automorphic classical solutions and optimal mild solutions for a fractional reaction–
diffusion equation to illustrate the practical usefulness of the results that we establish
in the paper.

A fractional reaction–diffusion equation is derived from a continuous time random
walk model when the transport is dispersive. In the recent years, there has been a great
deal of interest in fractional reaction–diffusion systems which from one side exhibit
selforganization phenomena and from the other side introduce a new parameter to these
systems, which is a fractional derivative index, and it gives a great degree of freedom
for diversity of selforganization phenomena and new nonlinear effects depending on
the order of time-space fractional derivatives. From a mathematics point of view they
also offer a rich and promising area of research. The most important advantage of
using fractional differential equations is their nonlocal property. This indicates that
the next state of a system depends not only upon its current state but also upon all
of its previous states. In recent years, the fractional reaction–diffusion equation has
received the applications in systems biology [25,26], chemistry, and biochemistry
applications [27]. A strong motivation for studying and investigating the solution and
the properties for fractional diffusion equations comes from the fact that they describe
efficiently anomalous diffusion on fractals (physical objects of fractional dimension,
like some amorphous semiconductors or strongly porous materials; see [17,28–33]
and references therein), fractional random walk, etc.

Consider the following fractional reaction–diffusion equations

∂α
t u(t, x) = ∂2

x u(t, x) + F(t, u(t, x)), t ∈ R, x ∈ [0, π ],
u(t, 0) = u(t, π) = 0, t ∈ R, (6.1)

123



2008 J Math Chem (2014) 52:1984–2012

where

F(t, u(t, x)) = β sin(∂x u(t, x))

[
sin

(
1

2 + cos(t1/2) + cos(
√

2t1/2)

)
+ t1/2e−|t |

]
.

Let u(s, x) = ϕ(s, x), ϕ(·, x) ∈ C([0, T ], R
1), ϕ(s, ·) ∈ L2([0, π ], R), s ∈

[0, T ], x ∈ [0, π ]. Denote X = L2([0, π ], R) and define A : D(A) ⊂ X → X
given by A = ∂2

∂x2 with the domain

D(A) =
{

u(·) ∈ X : u′′ ∈ X, u′ ∈ X is absolutely continuous on

[0, π ], u(0) = u(π) = 0
}
.

Taking α = 1/2, that is X1/2 = (D(A1/2), ‖ ·‖1/2). In the following, we give some
known results for the operators A and A1/2.

It is well known that A is self-adjoint, with compact resolvent and is the infinitesimal
generator of an analytic semigroup {T (t)}t≥0 satisfying ‖T (t)‖ ≤ e−t for t ≥ 0. Let
u ∈ D(A) and λ ∈ R, such that Au = −u′′ = λu, that is,

u′′ + λu = 0. (6.2)

Thus one has < Au, u >=< λu, u >, that is < −u′′, u >= ‖u′‖2
L2([0,π ],R)

=
λ‖u‖2

L2([0,π ],R)
. The solutions of (6.2) have the form

u(x) = C cos(
√

λx) + D sin(
√

λx).

From u(0) = u(π), it follows that C = 0 and
√

λ = n, n ∈ N . Put λn = n2, the
solutions of Eq. (6.2) are

un(x) = D sin(
√

λn x), n ∈ N .

According to < un, um >= 0, for n �= m and < un, un >= 1, one has D = √
2 and

un(x) = √
2 sin(

√
λn x).

For u ∈ D(A), there exists a sequence of reals (αn) such that

u(x) =
∑
n∈N

αnun(x),

∑
n∈N

α2
n < +∞,

∑
n∈N

λ2
nα

2
n < +∞.

Thus one has

A1/2u(x) =
∑
n∈N

√
λnαnun(x).
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with u ∈ D(A1/2), that is,

∑
n∈N

α2
n < +∞,

∑
n∈N

λnα
2
n < +∞.

Let

f (t, ϕ)(η) = β sin(ϕx (η))

[
sin

(
1

2 + cos(t1/2) + cos(
√

2t1/2)

)
+ t1/2e−|t |

]

= h(t)g(ϕ′),

for each t ∈ R and u ∈ X 1
2
, where

h(t) = β

[
sin

(
1

2+cos(t1/2)+cos(
√

2t1/2)

)
+t1/2e−|t |

]
and g(ϕ′)=sin(ϕx (η)).

Note that h(t) is weighted pseudo almost automorphic in R satisfying

|h(t) − h(s)| = β(1 + √
2)|t − s|1/2, (6.3)

and g is Lipschitz continuous on X that is

‖g(ϕ′
1) − g(ϕ′

2)‖ = ‖ϕ′
1 − ϕ′

2‖L2([0,π ],R). (6.4)

We show now that f satisfies the hypothesis (H2). In fact, for t1, t2 ∈ R and
ϕ1, ϕ2 ∈ X1/2, one has

‖ f (t1, ϕ1) − f (t2, ϕ2)‖ = ‖h(t1)g(ϕ′
1) − h(t2)g(ϕ′

2)‖
= ‖[h(t1) − h(t2)]g(ϕ′

1) + h(t2)[g(ϕ′
1) − g(ϕ′

2)]‖
≤ ‖h(t1) − h(t2)‖ + |h(t2)|‖ϕ′

1 − ϕ′
2‖. (6.5)

Since h is weighted pseudo almost automorphic, there exists K > 0, such that |h(t2)| ≤
K , ( Note that K ≤ β(1 + √

2)). Therefore, from (6.3), (6.4), (6.5), and the fact that
g(ϕ′) is Lipschitz on X1/2 (see for instance [74]), one has

‖ f (t1, ϕ1) − f (t2, ϕ2)‖ = ‖h(t1)g(ϕ′
1) − h(t2)g(ϕ′

2)‖
≤ β(1 + √

2)|t1 − t2| + K |‖ϕ1 − ϕ2‖1/2

≤ β(1 + √
2)(|t1 − t2| + |‖ϕ1 − ϕ2‖1/2).

Therefore, f satisfies the hypothesis (H2) with L = β(1 + √
2).

From Theorems 4.1 and 5.1, it follows that the following proposition holds.

Proposition 6.1 Equation (6.1) has a unique weighted pseudo-almost automorphic
classical solution and a unique optimal mild solution for β sufficiently small.
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